Thread
profile picture
Caca
Student XII IPA
Tentukan turunan pertama dari fungsi trigonometri berikut : 2. 1. f(x) = x' sin 2x f(x) = (3x - 4) (cos (2x + 1) 3. Jika f(x) = sin 2x cos 3x, tentukan nilai f'(450) 4. Jika f(x) = (1 + x) cos x, tentukan f'(x) pada x = 180° 5. Diketahui h(x) = a sin x + bx. Jika h'(30) = 3 dan h' (60°) = -1 Tentukan nila a + b
4 tahun yang lalu
total answer
1
total comment
0
share
Terjawab

Jawaban (1)
0
profile picture
Naluna
Student XII IPA
e. h(x)= asinxtby h (30)=3 h (68)=-1 a+n=1 h'(a)= acosx tb h (30)= acos 30 tb 3 = 2 arb ... O o 2 h (60%-acos both -1= karbo 00 B-19=4 닉 (15-179-8 a=8 B-1 2 8(13+1) =4(1371) -1.483+1tb -1: 2 b=-2833 ath=2(83+1+{-283-39 =-1 
a. f(x)=x"Sinax f'(x) = 4Sinza + x260526 = 47° singx +2 xcos2x b.f(*)= (3x 41 Cos(2x1) 661-30023-1) + (884)22-since-ny =300512x-1)-(64-875in (2x-1) C. f(x)=sin 2x (0534 (45)=1 f'(x)=2 Cos 216058x+ 5in2x2 (- Sin3x) = 2(0)2X (OS 3x-2sin 2x Sirx $(45)=2105 cas 135 - 2singo'sin 135 :-2.1. -B27 11. f(x) = (1+x)OSX f'(188) = ? f'(X)=2x(33*+ (11)-sim) - 2xC0SX-(Ita) sinx f('90)- 2.180COS ISO - =360.6-17 - $141809 in 180 =-360° Lbx 
Turunan Fungsi Trigonometri Rumus-rumus turunan trigonometri • f(x) = sinx - f'(x) = cos x f(x) = cos x - f'(x) = – sinx • f(x) = tan x - f'(x) = sec 2x • f(x) = cotx – f'(x) = -cosec ²x f(x) = secx - f'(x) = secx tan x • f(x) = cosec x — f'(x) = -cosecx · cotx • f(x) = a.sin(bx + c) → f'(x) = ab.cos(bx + c) • f(x) = a · cos(bx + c) - f'(x) = -ab sin(bx + c)
e. h(x)= asinxtby h (30)=3 h (68)=-1 a+n=1 h'(a)= acosx tb h (30)= acos 30 tb 3 = 2 arb ... O o 2 h (60%-acos both -1= karbo 00 B-19=4 닉 (15-179-8 a=8 B-1 2 8(13+1) =4(1371) -1.483+1tb -1: 2 b=-2833 ath=2(83+1+{-283-39 =-1 
a. f(x)=x"Sinax f'(x) = 4Sinza + x260526 = 47° singx +2 xcos2x b.f(*)= (3x 41 Cos(2x1) 661-30023-1) + (884)22-since-ny =300512x-1)-(64-875in (2x-1) C. f(x)=sin 2x (0534 (45)=1 f'(x)=2 Cos 216058x+ 5in2x2 (- Sin3x) = 2(0)2X (OS 3x-2sin 2x Sirx $(45)=2105 cas 135 - 2singo'sin 135 :-2.1. -B27 11. f(x) = (1+x)OSX f'(188) = ? f'(X)=2x(33*+ (11)-sim) - 2xC0SX-(Ita) sinx f('90)- 2.180COS ISO - =360.6-17 - $141809 in 180 =-360° Lbx 
Turunan Fungsi Trigonometri Rumus-rumus turunan trigonometri • f(x) = sinx - f'(x) = cos x f(x) = cos x - f'(x) = – sinx • f(x) = tan x - f'(x) = sec 2x • f(x) = cotx – f'(x) = -cosec ²x f(x) = secx - f'(x) = secx tan x • f(x) = cosec x — f'(x) = -cosecx · cotx • f(x) = a.sin(bx + c) → f'(x) = ab.cos(bx + c) • f(x) = a · cos(bx + c) - f'(x) = -ab sin(bx + c)
e. h(x)= asinxtby h (30)=3 h (68)=-1 a+n=1 h'(a)= acosx tb h (30)= acos 30 tb 3 = 2 arb ... O o 2 h (60%-acos both -1= karbo 00 B-19=4 닉 (15-179-8 a=8 B-1 2 8(13+1) =4(1371) -1.483+1tb -1: 2 b=-2833 ath=2(83+1+{-283-39 =-1 
a. f(x)=x"Sinax f'(x) = 4Sinza + x260526 = 47° singx +2 xcos2x b.f(*)= (3x 41 Cos(2x1) 661-30023-1) + (884)22-since-ny =300512x-1)-(64-875in (2x-1) C. f(x)=sin 2x (0534 (45)=1 f'(x)=2 Cos 216058x+ 5in2x2 (- Sin3x) = 2(0)2X (OS 3x-2sin 2x Sirx $(45)=2105 cas 135 - 2singo'sin 135 :-2.1. -B27 11. f(x) = (1+x)OSX f'(188) = ? f'(X)=2x(33*+ (11)-sim) - 2xC0SX-(Ita) sinx f('90)- 2.180COS ISO - =360.6-17 - $141809 in 180 =-360° Lbx 
Turunan Fungsi Trigonometri Rumus-rumus turunan trigonometri • f(x) = sinx - f'(x) = cos x f(x) = cos x - f'(x) = – sinx • f(x) = tan x - f'(x) = sec 2x • f(x) = cotx – f'(x) = -cosec ²x f(x) = secx - f'(x) = secx tan x • f(x) = cosec x — f'(x) = -cosecx · cotx • f(x) = a.sin(bx + c) → f'(x) = ab.cos(bx + c) • f(x) = a · cos(bx + c) - f'(x) = -ab sin(bx + c)
e. h(x)= asinxtby h (30)=3 h (68)=-1 a+n=1 h'(a)= acosx tb h (30)= acos 30 tb 3 = 2 arb ... O o 2 h (60%-acos both -1= karbo 00 B-19=4 닉 (15-179-8 a=8 B-1 2 8(13+1) =4(1371) -1.483+1tb -1: 2 b=-2833 ath=2(83+1+{-283-39 =-1 
a. f(x)=x"Sinax f'(x) = 4Sinza + x260526 = 47° singx +2 xcos2x b.f(*)= (3x 41 Cos(2x1) 661-30023-1) + (884)22-since-ny =300512x-1)-(64-875in (2x-1) C. f(x)=sin 2x (0534 (45)=1 f'(x)=2 Cos 216058x+ 5in2x2 (- Sin3x) = 2(0)2X (OS 3x-2sin 2x Sirx $(45)=2105 cas 135 - 2singo'sin 135 :-2.1. -B27 11. f(x) = (1+x)OSX f'(188) = ? f'(X)=2x(33*+ (11)-sim) - 2xC0SX-(Ita) sinx f('90)- 2.180COS ISO - =360.6-17 - $141809 in 180 =-360° Lbx 
Turunan Fungsi Trigonometri Rumus-rumus turunan trigonometri • f(x) = sinx - f'(x) = cos x f(x) = cos x - f'(x) = – sinx • f(x) = tan x - f'(x) = sec 2x • f(x) = cotx – f'(x) = -cosec ²x f(x) = secx - f'(x) = secx tan x • f(x) = cosec x — f'(x) = -cosecx · cotx • f(x) = a.sin(bx + c) → f'(x) = ab.cos(bx + c) • f(x) = a · cos(bx + c) - f'(x) = -ab sin(bx + c)
4 tahun yang lalu
total comment
3
Balas
Terverifikasi

Tampilkan semua komentar